Fractional Hamiltonian Monodromy from a Gauss-manin Monodromy

نویسندگان

  • D. SUGNY
  • P. MARDEŠIĆ
  • M. PELLETIER
  • A. JEBRANE
  • H. R. JAUSLIN
چکیده

Fractional Hamiltonian Monodromy is a generalization of the notion of Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A. Sadovskíı and B. I. Zhilinskíı for energy-momentum maps whose image has a particular type of non-isolated singularities. In this paper, we analyze the notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin Monodromy of a Riemann surface constructed from the energy-momentum map and associated to a loop in complex space which bypasses the line of singularities. We also prove some propositions on Fractional Hamiltonian Monodromy for 1 : −n and m : −n resonant systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy of Hypersurface Singularities

We describe algorithmic methods for the Gauss-Manin connection of an isolated hypersurface singularity based on the microlocal structure of the Brieskorn lattice. They lead to algorithms for computing invariants like the monodromy, the spectrum, the spectral pairs, and M. Saito’s matrices A0 and A1. These algorithms use a normal form algorithm for the Brieskorn lattice, standard basis methods f...

متن کامل

Mirror Symmetry via Logarithmic Degeneration Data Ii Mark Gross and Bernd Siebert

Introduction. 1 1. Derivations and differentials 6 2. Log Calabi-Yau spaces: local structure and deformation theory 16 2.1. Local structure 16 2.2. Deformation theory 25 3. Cohomology of log Calabi-Yau spaces 38 3.1. Local calculations 38 3.2. Global calculations 46 3.3. The Hodge decomposition 59 4. Basechange and the cohomology of smoothings 67 5. Monodromy and the logarithmic Gauss-Manin con...

متن کامل

Logarithmic Comparison Theorem versus Gauss–manin System for Isolated Singularities

For quasihomogeneous isolated hypersurface singularities, the logarithmic comparison theorem has been characterized explicitly by Holland and Mond. In the nonquasihomogeneous case, we give a necessary condition for the logarithmic comparison theorem in terms of the Gauss–Manin system of the singularity. It shows in particular that the logarithmic comparison theorem can hold for a nonquasihomoge...

متن کامل

Fractional bidromy in the vibrational spectrum of HOCl.

We introduce the notion of fractional bidromy which is the combination of fractional monodromy and bidromy, two recent generalizations of Hamiltonian monodromy. We consider the vibrational spectrum of the HOCl molecule which is used as an illustrative example to show the presence of nontrivial fractional bidromy. To our knowledge, this is the first example of a molecular system where such a gen...

متن کامل

Periods of Integrals on Algebraic Manifolds: Summary of Main Results and Discussion of Open Problems

0. Introduction 229 Par t I. Summary of main results 231 1. The geometric situation giving rise to variation of Hodge structure. . . . 231 2. Data given by the variation of Hodge structure 232 3. Theorems about monodromy of homology 235 4. Theorems about Picard-Fuchs equations (Gauss-Manin connex ion) . . . . 237 5. Global theorems about holomorphic and locally constant cohomology classes 242 6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008